Low-power D-type flip-flop with reset; positive-edge triggerRev. 02 — 28 February 2008Product data sh

Product data sheet

General description 1.

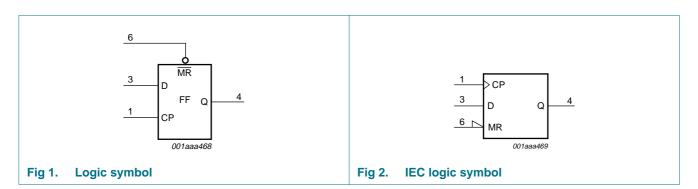
The 74AUP1G175 provides a low-power, low-voltage positive-edge triggered D-type flip-flop with individual data (D) input, clock (CP) input, master reset (MR) input, and Q output. The master reset (\overline{MR}) is an asynchronous active LOW input and operates independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

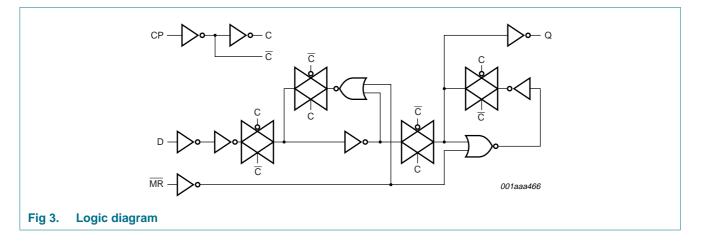
Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V. This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using IOFF. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. **Features**

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \ \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

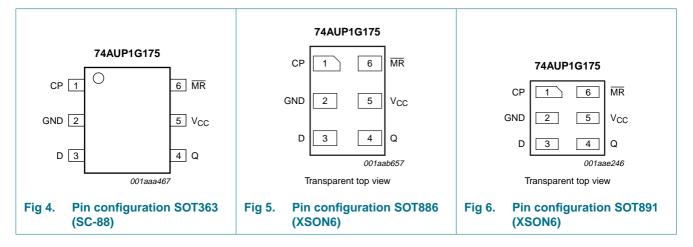

3. Ordering information


Table 1. Orderin	g information			
Type number	Package			
	Temperature range	Name	Description	Version
74AUP1G175GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363
74AUP1G175GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886
74AUP1G175GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891

4. Marking

Table 2. Marking	
Type number	Marking code
74AUP1G175GW	aT
74AUP1G175GM	aT
74AUP1G175GF	aT

5. Functional diagram



Low-power D-type flip-flop with reset; positive-edge trigger

6. Pinning information

6.1 Pinning

6.2 Pin description

SymbolPinDescriptionCP1clock input (LOW-to-HIGH, edge-triggered)GND2ground (0 V)D3data inputQ4flip-flop outputV _{CC} 5supply voltageMR6master reset input (active LOW)	Table 3.	Pin description	
GND2ground (0 V)D3data inputQ4flip-flop outputV_CC5supply voltage	Symbol	Pin	Description
D 3 data input Q 4 flip-flop output V _{CC} 5 supply voltage	CP	1	clock input (LOW-to-HIGH, edge-triggered)
Q 4 flip-flop output V _{CC} 5 supply voltage	GND	2	ground (0 V)
V _{CC} 5 supply voltage	D	3	data input
	Q	4	flip-flop output
MR 6 master reset input (active LOW)		5	supply voltage
	MR	6	master reset input (active LOW)

7. Functional description

Table 4.Function table

Operating mode	Input				
	MR	СР	D	Q	
Reset (clear)	L	Х	Х	L	
Load '1'	Н	Ŷ	h	Н	
Load '0'	Н	Ŷ	I	L	

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;

 \uparrow = LOW-to-HIGH CP transition;

X = don't care.

Low-power D-type flip-flop with reset; positive-edge trigger

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

					,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		[1] -0.5	+4.6	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $\ ^{\circ}C$	[2] _	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6.	Recommended operating conditi	ons			
Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V_{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$	-	200	ns/V

Table 6. Recommended operating conditions

Low-power D-type flip-flop with reset; positive-edge trigger

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

T _{amb} = 2 V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V				
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V				
			$0.70 imes V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.65 imes V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
VIL	LOW-level input voltage	$V_{CC} = 0.8 V$	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –20 $\mu\text{A};$ V_{CC} = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 imes V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_O = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.31	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.31	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.44	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.31	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
I	input leakage current	$V_{\rm I}$ = GND to 3.6 V; $V_{\rm CC}$ = 0 V to 3.6 V	-	-	±0.1	μΑ
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μΑ
∆I _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.2	μΑ
сс	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \; A; \\ V_{CC} = 0.8 \; V \; to \; 3.6 \; V \end{array}$	-	-	0.5	μΑ
∆l _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	<u>[1]</u> _	-	40	μA
Cı	input capacitance	$V_{CC} = 0$ V to 3.6 V; $V_I = GND$ or V_{CC}	-	0.8	-	pF
C _O	output capacitance	$V_{O} = GND; V_{CC} = 0 V$	-	1.7	-	pF

Low-power D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	40 °C to +85 °C					
V _{IH}	HIGH-level input voltage	$V_{CC} = 0.8 V$	$0.70 imes V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.65 imes V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V_{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 0.8 V$	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V_{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC} - 0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7 imes V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.97	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		$I_0 = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.35	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.33	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V
I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μΑ
OFF	power-off leakage current	$V_{I} \text{ or } V_{O}$ = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μΑ
∆l _{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.6	μA
l _{cc}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 0.8 \ V \ \text{to} \ 3.6 \ V \end{array}$	-	-	0.9	μΑ
ΔI _{CC}	additional supply current		<u>[1]</u> -	-	50	μΑ

Static characteristics ... continued Table 7.

Low-power D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	40 °C to +125 °C					
V _{IH}	HIGH-level input voltage	$V_{CC} = 0.8 V$	$0.75 imes V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.70 imes V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
/ _{IL}	LOW-level input voltage	$V_{CC} = 0.8 V$	-	-	$0.25 \times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.30 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
√ _{ОН}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	V _{CC} – 0.11	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
/ _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_O = 20 $\mu A;V_{CC}$ = 0.8 V to 3.6 V	-	-	0.11	V
		I_{O} = 1.1 mA; V_{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.41	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.39	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.36	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.50	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.36	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.50	V
I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μΑ
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μΑ
∆I _{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.75	μA
сс	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \; A; \\ V_{CC} = 0.8 \; V \; to \; 3.6 \; V \end{array}$	-	-	1.4	μA
∆l _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	<u>[1]</u> _	-	75	μA

Static characteristics ... continued Table 7.

[1] One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions		25 °C		-4	0 °C to +1	25 °C	Unit
			Min	Typ[1]	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 p	F								
t _{pd}	propagation delay	CP to Q; see Figure 7 [2]							
		$V_{CC} = 0.8 V$	-	21.1	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	2.4	5.9	11.7	2.2	11.9	12.0	ns
		V_{CC} = 1.4 V to 1.6 V	2.0	4.1	6.8	1.8	7.3	7.6	ns
		V_{CC} = 1.65 V to 1.95 V	1.6	3.3	5.4	1.3	5.9	6.2	ns
		V_{CC} = 2.3 V to 2.7 V	1.3	2.5	3.6	1.1	4.0	4.2	ns
		V_{CC} = 3.0 V to 3.6 V	1.2	2.1	2.9	1.0	3.3	3.5	ns
		MR to Q; see Figure 8[2]							
		$V_{CC} = 0.8 V$	-	17.4	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V} \text{ to } 1.3 \text{ V}$	2.4	5.2	9.7	2.2	10.0	12.0	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	2.3	3.8	5.2	2.1	6.4	6.6	ns
		V_{CC} = 1.65 V to 1.95 V	1.8	3.1	4.9	1.7	5.4	5.6	ns
		V_{CC} = 2.3 V to 2.7 V	1.8	2.6	3.6	1.5	4.0	4.0	ns
		V_{CC} = 3.0 V to 3.6 V	1.6	2.4	3.1	1.3	3.3	3.6	ns
f _{max}	maximum	CP; see Figure 7							
	frequency	$V_{CC} = 0.8 V$	-	50	-	-	-	-	MHz
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ - 200 - 170	-	MHz					
		V_{CC} = 1.4 V to 1.6 V	-	345	-	310	-	-	MHz
		V_{CC} = 1.65 V to 1.95 V	-	435	-	400	-	-	MHz
		V_{CC} = 2.3 V to 2.7 V	-	550	-	490	-	-	MHz
		V_{CC} = 3.0 V to 3.6 V	-	615	-	550	-	-	MHz

Low-power D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions		25 °C		_4	0 °C to +′	125 °C	Uni
			Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 10 p	o F								
t _{pd}	propagation delay	CP to Q; see Figure 7	[2]						
		$V_{CC} = 0.8 V$	-	24.7	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	2.6	6.8	13.3	2.4	13.6	13.6	ns
		V_{CC} = 1.4 V to 1.6 V	2.3	4.8	7.9	2.0	8.4	8.7	ns
		V_{CC} = 1.65 V to 1.95 V	2.1	3.9	6.1	1.8	6.6	6.9	ns
		V_{CC} = 2.3 V to 2.7 V	1.7	3.0	4.3	1.5	4.7	5.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.6	2.7	3.6	1.3	4.0	4.2	ns
		MR to Q; see Figure 8	[2]						
		$V_{CC} = 0.8 V$	-	21.0	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	2.6	6.2	11.5	2.6	11.7	13.6	ns
		V_{CC} = 1.4 V to 1.6 V	2.5	4.4	6.1	2.4	7.6	7.8	ns
		V_{CC} = 1.65 V to 1.95 V	2.5	3.7	5.7	2.2	6.3	6.3	ns
		V_{CC} = 2.3 V to 2.7 V	2.1	3.2	4.3	1.9	4.7	4.9	ns
		V_{CC} = 3.0 V to 3.6 V	2.0	3.0	3.9	1.8	4.1	4.3	ns
	maximum	CP; see Figure 7							
	frequency	$V_{CC} = 0.8 V$	-	50	-	-	-	-	ns ns ns ns ns ns ns ns ns
		V_{CC} = 1.1 V to 1.3 V	-	190	-	150	-	-	
		$V_{CC} = 1.4 \text{ V}$ to 1.6 V	-	320	-	280	-	-	
		V_{CC} = 1.65 V to 1.95 V	-	420	-	310	-	-	Мŀ
		V_{CC} = 2.3 V to 2.7 V	-	485	-	370	-	-	Мŀ
		V_{CC} = 3.0 V to 3.6 V	-	550	-	410	-	-	МH
C _L = 15 բ	ρF								
t _{pd}	propagation delay	CP to Q; see Figure 7	[2]						
		$V_{CC} = 0.8 V$	-	28.1	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	3.0	7.6	14.8	2.8	15.2	15.4	ns
		$V_{CC} = 1.4 \text{ V}$ to 1.6 V	2.7	5.3	8.7	2.3	9.4	9.9	ns ns ns ns ns ns ns ns ns ns ns ns ns n
		V_{CC} = 1.65 V to 1.95 V	2.3	4.4	6.8	2.1	7.4	7.9	ns
		V_{CC} = 2.3 V to 2.7 V	2.1	3.5	5.0	1.9	5.3	5.6	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	3.1	4.3	1.7	4.7	4.9	ns
		MR to Q; see Figure 8	[2]						
		$V_{CC} = 0.8 V$	-	24.6	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	3.2	7.0	13.2	2.9	13.5	15.2	ns ns ns ns ns ns ns ns ns ns ns ms ms ms ms ms ns ns ns ns ns ns ns ns ns ns ns ns ns
		V_{CC} = 1.4 V to 1.6 V	3.1	5.0	6.8	2.6	8.6	9.1	
		V_{CC} = 1.65 V to 1.95 V	2.5	4.3	6.5	2.5	7.2	7.4	ns
		V_{CC} = 2.3 V to 2.7 V	2.6	3.7	5.0	2.2	5.4	5.5	ns
		V_{CC} = 3.0 V to 3.6 V	2.4	3.5	4.4	2.1	4.8	5.0	ns

Dynamic characteristics ... continued Table 8.

Low-power D-type flip-flop with reset; positive-edge trigger

–40 °C to +125 °C Symbol Parameter Conditions 25 °C Unit Min Typ^[1] Max Min Max Мах (125 °C) (85 °C) maximum CP; see Figure 7 f_{max} frequency $V_{CC} = 0.8 V$ MHz 50 _ _ --- $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ 180 120 MHz ---- $V_{CC} = 1.4 \text{ V}$ to 1.6 V 300 190 MHz _ _ _ _ $V_{CC} = 1.65 \text{ V}$ to 1.95 V 405 240 MHz ---- $V_{CC} = 2.3 \text{ V}$ to 2.7 V 420 300 MHz ---- $V_{CC} = 3.0 \text{ V}$ to 3.6 V 320 480 MHz _ _ -_ $C_{L} = 30 \text{ pF}$ propagation delay CP to Q; see Figure 7 [2] t_{pd} $V_{CC} = 0.8 V$ 38.4 -_ --ns $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ 3.6 9.8 19.5 3.4 20.6 21.0 ns $V_{CC} = 1.4 \text{ V}$ to 1.6 V 3.3 6.9 11.2 3.2 12.4 13.0 ns $V_{CC} = 1.65 \text{ V}$ to 1.95 V 3.1 5.7 8.8 2.9 9.6 10.2 ns $V_{CC} = 2.3 \text{ V}$ to 2.7 V 3.0 4.6 6.4 2.6 6.9 7.3 ns $V_{CC} = 3.0 \text{ V}$ to 3.6 V 2.8 4.2 5.7 2.5 6.5 6.9 ns MR to Q; see Figure 8 [2] $V_{CC} = 0.8 V$ 35.1 ----ns $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ 3.9 9.3 18.0 3.7 18.6 19.8 ns $V_{CC} = 1.4 \text{ V}$ to 1.6 V 3.9 8.9 12.2 6.6 3.6 11.6 ns $V_{CC} = 1.65 \text{ V}$ to 1.95 V 3.6 5.6 8.6 3.4 9.6 9.7 ns $V_{CC} = 2.3 \text{ V}$ to 2.7 V 3.5 4.8 6.4 2.9 7.2 7.2 ns $V_{CC} = 3.0 \text{ V}$ to 3.6 V 3.3 4.6 5.7 3.1 6.4 6.9 ns CP; see Figure 7 f_{max} maximum frequency $V_{CC} = 0.8 V$ 35 MHz ----- $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ 70 MHz 130 ---- $V_{CC} = 1.4 \text{ V}$ to 1.6 V 200 120 MHz _ --_ $V_{CC} = 1.65 \text{ V}$ to 1.95 V 240 150 MHz ---- V_{CC} = 2.3 V to 2.7 V 190 MHz -275 _ _ _ $V_{CC} = 3.0 \text{ V}$ to 3.6 V 300 200 MHz _ _ --

Table 8. Dynamic characteristics ... continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

74AUP1G175 2

Low-power D-type flip-flop with reset; positive-edge trigger

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions		25 °C					Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	, F, 10 pF, 15 pF and	30 pF							
tw	pulse width	CP; HIGH or LOW; see <mark>Figure 7</mark>							
		$V_{CC} = 0.8 V$	-	5.25	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	-	1.6	-	1.5	-	-	ns
		V_{CC} = 1.4 V to 1.6 V	-	1.0	-	0.9	-		ns
		V_{CC} = 1.65 V to 1.95 V	-	0.75	-	0.7	-		ns
		V_{CC} = 2.3 V to 2.7 V	-	0.6	-	0.4	-		ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	0.55	0.55 - 0.4 r	ns			
		MR; LOW; see Figure 8					MinMax (85°C)Max (125°C)1.5-0.9-0.7-0.4-0.41.5-0.41.1-0.2-1.20.80.70.81.20.81.10.81.10.70.81.10.11.20.31.11.21.10.30.40.50.60.70.80.90.91.1-<		
		$V_{CC} = 0.8 V$	-	9.0	-	-		ns	
		V_{CC} = 1.1 V to 1.3 V	-	3.0	-	4.9	-	-	ns
		$V_{CC} = 1.4 \text{ V}$ to 1.6 V	-	1.75	-	2.5	-	-	ns
		V_{CC} = 1.65 V to 1.95 V	-	1.35	-	1.8	-	-	ns
		V_{CC} = 2.3 V to 2.7 V	-	0.9	-	1.1	-	-	ns
		V_{CC} = 3.0 V to 3.6 V	-	0.8	-	0.8	-	-	ns
t _{rec} r	recovery time	MR; see Figure 8							
		$V_{CC} = 0.8 V$	-	-	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V}$ to 1.3 V	-	-1.1	-	-1.2	-	-	ns
		$V_{CC} = 1.4 \text{ V}$ to 1.6 V	-	-2.0	-	-0.8	-	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	-0.5	-	-0.7	-	-	ns
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	-	-0.9	-	-0.4	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-1.0	-	-0.2	-	-	ns
t _{su(H)}	setup time HIGH	D to CP; see Figure 7							
		V _{CC} = 0.8 V	-	-	-	-	5 r 9 r 4 r 4 r 4 r 5 r 5 r 3 r 1 r 3 r 2 r 4 r 2 r 4 - r 7 r 4 - r 7 r 4 - r 7 r 4 - r 7 r 7 r 1 - r 1 - r 1 - r 2 r 1 - r 1 - r 1 - r 1 r 1 - r 2 r 1 - r 1 r r	ns	
		$V_{CC} = 1.1 \text{ V} \text{ to } 1.3 \text{ V}$	-	0.5	-	1.2	-	-	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	-	0.4	-	0.8	-	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.3	-	0.6	-	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.3	-	0.5	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	0.2	-	0.5	-	-	ns
su(L)	setup time LOW	D to CP; see Figure 7							ns ns ns ns ns ns ns ns ns ns ns ns ns n
. /		V _{CC} = 0.8 V	-	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	0.8	-	1.7	-	-	ns
		$V_{CC} = 1.4$ V to 1.6 V	-	0.6	-	1.1	-	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.4	-	0.9	-	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.4	-	0.9	-	-	
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		0.5	-				

Low-power D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions		25 °C –40 °C t		0 °C to +1	to +125 °C			
				Min	Typ <mark>[1]</mark>	Мах	Min	Мах (85 °С)	Max (125 °C)	
t _h	hold time	D to CP; see Figure 7			1			1		
		$V_{CC} = 0.8 V$		-	-	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		-	-0.7	-	0.2	-	-	ns
		V_{CC} = 1.4 V to 1.6 V		-	-0.5	-	0	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		-	-0.5	-	0	-	-	ns
		V_{CC} = 2.3 V to 2.7 V		-	-0.3	-	0	-	-	ns
		V_{CC} = 3.0 V to 3.6 V		-	-0.4	-	0	-	-	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz};$ V _I = GND to V _{CC}	[3]							
		$V_{CC} = 0.8 V$		-	1.6	-	-	-	-	pF
		V_{CC} = 1.1 V to 1.3 V		-	1.7	-	-	-	-	pF
		V_{CC} = 1.4 V to 1.6 V		-	1.8	-	-	-	-	pF
		V_{CC} = 1.65 V to 1.95 V		-	1.9	-	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V		-	2.2	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	2.7	-	-	-	-	рF

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

[1] All typical values are measured at nominal V_{CC} .

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

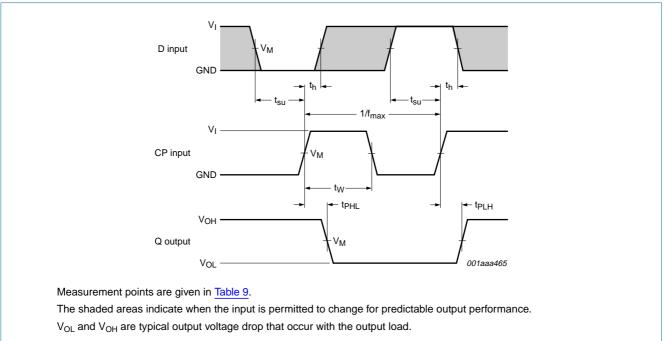
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

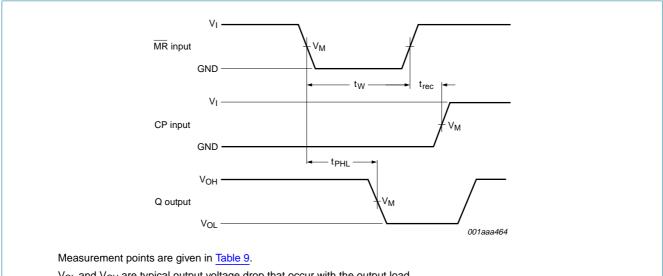
 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;

N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

Low-power D-type flip-flop with reset; positive-edge trigger

12. Waveforms

V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.

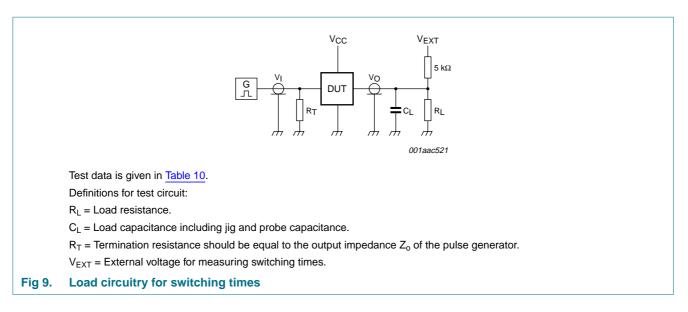

Fig 8. The master reset (MR) input to output (Q) propagation delays, the master reset pulse width and the MR to CP recovery time

Table 9.Measurement points

Supply voltage	Output	Input			
V _{CC}	V _M	V _M	VI	t _r = t _f	
0.8 V to 3.6 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{CC}	≤ 3.0 ns	

74AUP1G175_2

Low-power D-type flip-flop with reset; positive-edge trigger

Table 10. Test data

Supply voltage	Load		V _{EXT}		
V _{CC}	CL	RL ^[1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

NXP Semiconductors

74AUP1G175

Low-power D-type flip-flop with reset; positive-edge trigger

13. Package outline

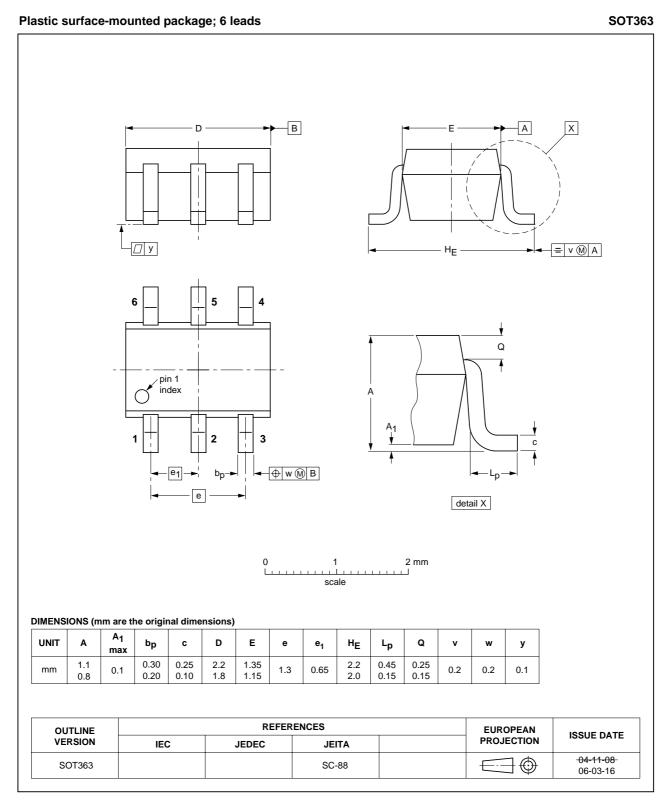
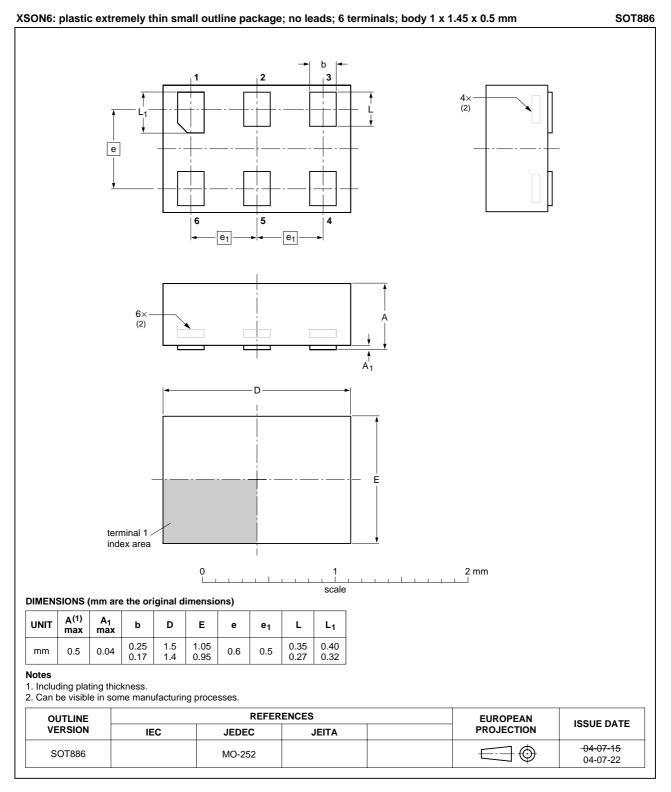



Fig 10. Package outline SOT363 (SC-88)

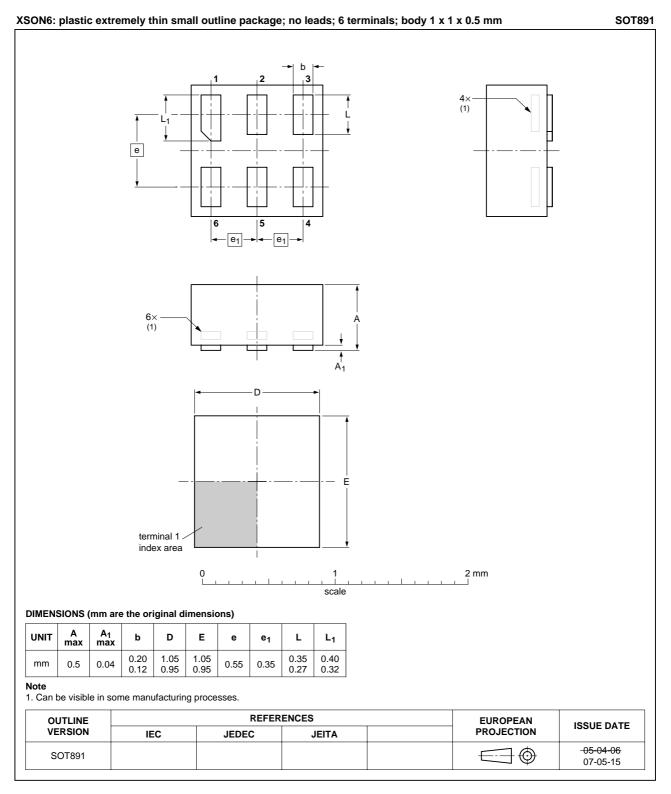

Low-power D-type flip-flop with reset; positive-edge trigger

Fig 11. Package outline SOT886 (XSON6)

74AUP1G175_2 Product data sheet

Low-power D-type flip-flop with reset; positive-edge trigger

Fig 12. Package outline SOT891 (XSON6)

14. Abbreviations

Acronym CDM	Description Charged Device Model
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

15. Revision history

Table 12. Revision his	tory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1G175_2	20080228	Product data sheet	-	74AUP1G175_1
Modifications:		Dynamic characteristics": ₂ _D and t _{pd} (MR to Q) values.		
74AUP1G175_1	20061115	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

74AUP1G175

Low-power D-type flip-flop with reset; positive-edge trigger

18. Contents

1	General description 1
2	Features 1
3	Ordering information 2
4	Marking
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 8
12	Waveforms 13
13	Package outline 15
14	Abbreviations 18
15	Revision history 18
16	Legal information 19
16.1	Data sheet status 19
16.2	Definitions 19
16.3	Disclaimers
16.4	Trademarks 19
17	Contact information 19
18	Contents 20

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 28 February 2008 Document identifier: 74AUP1G175_2

